DEAMINATION OF THE EPIMERIC 6-AMINOMETHYLBICYCLO(3,2,2)NONANES

M. Doyle and W. Parker

School of Physical Sciences, New University of Ulster, Coleraine, N. Ireland (Received in UK 30 January 1970; accepted for publication 5 February 1970)

Bicyclo(3,3,2)decan-3-one and the corresponding epimeric 3-ols were required as part of our examination⁽¹⁾ of this ring system. Condensation of cyclohepta-1,3diene and acrylonitrile⁽²⁾ in a sealed tube at 165° furnished a 3:2 mixture of the epimeric 6-cyanobicyclo(3,2,2)non-8-enes which were separated by preparative thinlayer chromatography and hydrogenated to give 1 and 2, (R = CN). Comparison of the

corresponding p.m.r. spectra with that of the endo-acid⁽³⁾ (1, $R = CO_2H$) suggests that the exo-epimer (2, R = CN) predominates.

Lithium aluminium hydride reduction of the mixture⁽²⁾ (1 and 2, R = CN) and subsequent treatment with HCl gas gave the corresponding hydrochlorides (1 and 2, $R = -CH_2NH_3^+Cl^-$), which on treatment with nitrous acid at 100^o and isolation of the product by steam distillation⁽²⁾ gave a mixture of alcohols only poorly resolved by gas liquid chromatographic analysis.

Alder⁽²⁾ assumed that this ring expansion deamination produced only bicyclo-(3,3,2)decan-3-ols, whereas a recent publication⁽⁴⁾ describes a single alcohol which was characterised spectrally as the corresponding amine⁽⁵⁾ and assigned the bicyclo-(3,3,2)decan-3-ol structure (of unknown configuration).

Acetylation of the above mixture and gas liquid chromatographic analysis* with authentic samples $^{(6)}$, revealed a product distribution consisting of mainly epimeric bicyclo(3,3,2)decan-2-ols. (See Table 1)

* 50 metre, .01" diameter, T.C.E.P., capillary column. 945

TABLE 1

Product distribution (%) from Deamination of mixed exo/endo 6-aminomethylbicyclo(3,2,2)nonanes

<u>exo</u> -2-bicyclo(3,3,2)decanol <u>endo</u> -2-bicyclo(3,3,2)decanol <u>exo</u> -3-bicyclo(3,3,2)decanol <u>endo</u> -3-bicyclo(3,3,2)decanol	16		
	36 6 12		
		six unidentified components	30†

+ Present in ca. equal amounts, all of shorter retention times than the 2 and 3-bicyclodecyl acetates.

An unambiguous determination of the stereochemistry of 1 and 2 (R = CN) and isolation and structural determination of the six minor components is now in progress with a view to elucidating the competing roles played by preferred conformation and "memory effects" ⁽⁷⁾ in determining the product distribution.

REFERENCES

- (1) M.P. Doyle and W. Parker, Chem. Comm., 1969, 319.
- (2) K. Alder, S. Hartung and G. Hausmann, Ber., 1956, 1972.
- (3) A.B. Penrose, Ph.D. Thesis, Glasgow University, 1969.
- (4) B.P. 1, 104, 058; A.P. 3, 427, 353; Chem. Abst., 1968, <u>69</u>, 51739e.
- (5) Dr. A. Chow, personal communication.
- (6) Jones oxidation of <u>exo-2-bicyclo(3,3,2)decanol⁽¹⁾</u> gave the corresponding 2-one (v_{max} CCl₄ 1706 cm⁻¹, incorporation of three deuterium atoms on treatment with 0.1 M. NaOD/Dioxan. M^{+ m}/e 155). Subsequent lithium aluminium hydride reduction proceeded non-stereoselectively giving a 65:35 mixture of <u>exo:endo</u> 2-ols.

Oxidation of <u>exo-3-bicyclo(3,3,2)decanol⁽¹⁾</u> gave the 3-one $(v_{max} \text{ CCl}_4$ 1698 cm⁻¹, incorporation of four deuterium atoms, M^{+ m}/e 156). Similar reduction of this ketone gave a 2:3 mixture of <u>exo:endo</u> 3-ols.

(7) J.A. Berson, <u>Angew. Chem. Int.</u>, <u>7</u>, 1968, 779.